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Non-Turing stationary patterns in flow-distributed oscillators
with general diffusion and flow rates
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An analytical prediction@P. Andresenet al., Phys. Rev. E60, 297~1999!# and its experimental confirmation
@M. Kaernet al., Phys. Rev. E60, 3471~1999!# establish a mechanism for forming stationary, space-periodic
structures in a reactive flow~reaction-diffusion-convection system! with equal diffusion and flow rates. In this
paper we generalize the analysis to systems with unequal diffusion and flow rates. Interestingly, stationary
waves also exist outside the oscillatory Hopf domain of the batch system—hence the parameter space in which
these structures exist is bigger than that initially predicted@P. Andresenet al., Phys. Rev. E.60, 297 ~1999!#
~for equal diffusion and flow rates!. On the other hand, we find that these stationary waves exist only for
parameter values outside of and up to the Turing regime. We clarify the nature of the instability in terms of a
boundary-forcing problem, whereby a time-periodic pattern is carried over the whole domain by the flow while
the phase is fixed at the inflow boundary.

PACS number~s!: 82.20.2w
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I. INTRODUCTION

Andresenet al. @1# proposed an alternative spatial inst
bility mechanism that gives rise to stationary, space-perio
patterns in a time-oscillating reaction-diffusion-convecti
system with equal diffusion and flow rates through the c
stant forcing at the inflow boundary of the flow domain~see
also the earlier contribution@2#!. This mechanism is interest
ing since it differs fundamentally from the Turing@4# and
differential flow instabilities~DIFI! @3#, which require differ-
ential transport of the key species, and since the condit
for the alternative instability may be readily realized
chemical flow reactors, using active media in the oscillat
~Hopf! domain. This prediction was confirmed experime
tally by Kaern and Menzinger@5#. From their results it is
clear that the patterns arise by a mechanism that is essen
kinematic. Accordingly, the flow carries temporal oscill
tions into space, while the oscillation phase is locked at
inflow boundary through a constant boundary conditio
Therefore we refer to these stationary structures as fl
distributed oscillations~FDO!.

In this work we generalize the above results to the cas
a reaction-diffusion-convection system with different
transport, i.e., with different diffusion and flow rates. To d
tinguish the resulting waves~for this more general case!
from the FDO waves, we refer to them here as flo
distributed structures or FDS. The analysis provides
boundary of the FDS instability in the parameter domain a
clarifies its relation to Turing and DIFI patterns. We analy
how this instability connects with the Turing and DIFI d
mains and discuss the interface with, and difference fro
the two classical, differential transport-induced instabil
mechanisms. This paper sheds light on how the reg
where stationary Turing patterns are observed in the abs
of a bulk flow, may be extended by the presence of a flo
We find that an unstable~Hopf! reference state is not nece
sary for FDS to occur, and that their domain extends into
PRE 621063-651X/2000/62~1!/113~7!/$15.00
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region where the reference state is stable. Our analytica
sults confirm the kinematic interpretation@5# that the FDO
instability is being driven by boundary forcing that freez
the temporal oscillation phase of the species traveling al
the flow domain until the other boundary is encountered.

II. A REACTION-DIFFUSION-CONVECTION SYSTEM
WITH UNEQUAL DIFFUSION AND FLOW RATES:

AN IONIC CHEMICAL SYSTEM WITH CUBIC
AUTOCATALYTIC STEP

We generalize the problem considered in@1# by employ-
ing a model for a differential-flow reactor based on applyi
an electric field to a reacting medium with an ionic versi
of cubic autocatalator~or Gray-Scott! kinetics @6#. The dif-
ferential flow ~or migration! of the reacting species arise
since substrateA1 and autocatalystB1 have different drift
velocities due to their different diffusion coefficients. By u
ing the cubic autocatalator model~as opposed to the Bruss
elator model in@1#! it simplifies considerably the details o
the subsequent calculations while still preserving all the f
tures of the general case.

The model assumes that we have a precursorP1 present
in excess. To maintain electroneutrality we also require
further speciesQ2 to be present in the reactor at a conce
tration similar to that ofP1, though this species does no
take part in the reaction. We assume thatP1 decays at a
constant rate to form the substrateA1 via

P1→A1, rate5k0p0 , ~2.1!

wherep0 is the initial concentration of the reservoir speci
P1. The substrateA1 and autocatalystB1 subsequently re-
act according to the scheme

A112B1→3B1, rate5k1ab2, ~2.2!

B1→C1, rate5k2b, ~2.3!
113 ©2000 The American Physical Society
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114 PRE 62RAZVAN A. SATNOIANU AND MICHAEL MENZINGER
where theki are constants anda, b are the concentrations o
A1 and B1. The nonionic version of this scheme is ful
described in@7#, where a justification for the pool chemica
approximation, which allows step~2.1! to proceed at a con
stant rate, is given.

With P1 andC1 present in excess, so that reactions~2.2!
and ~2.3! make only a small net contribution to the overa
ionic balance, we can invoke the constant field approxim
tion used extensively in previous models. A formal justific
tion for this approximation is given in@8#. We take the reac-
tor to be such that transverse variations in concentration
be neglected, and it is sufficiently long for end effects to
negligible@5#. This leads to the dimensionless reactor mo
~see@6# for the derivation of these equations and the infl
ence of the electric field in their form!

]a

]t
5d

]2a

]x22df
]a

]x
1m2ab2, ~2.4!

]b

]t
5

]2b

]x22f
]b

]x
1ab22b, ~2.5!

where a, b, t, and x are the dimensionless concentration
time, and distance along the reactor witht.0 and 0,x
,`. Hered5DA /DB is the ratio of diffusion coefficients o
substrateA1 and autocatalystB1, respectively, andf is the
dimensionless drift velocity ofB1, which we use as the bi
furcation parameter. Sinced couples the differential-
diffusion and flow@through thedf term in Eq. ~2.4!# it is
also called the differential transport ratio. Without any lo
of generality we assume thatf.0. On puttingd50 in Eqs.
~2.4! and~2.5! we recover the model discussed in Satnoia
et al. @9# and Merkinet al. @10#.

The kinetic system,~2.4! and ~2.5!, has a~spatially uni-
form! steady stateS5(a,b)5(m21,m) that is stable form
.1 and undergoes a supercritical Hopf bifurcation atm
51. This leads to stable limit cycles in the intervalm0,m
,1 (m0>0.9003). Form,m0 , the kinetic system does no
have a long-time steady state witha;mt, b→0 as t→`.
We assume that initially the system is in its spatially unifo
reference stateS, taking

a5m21, b5m at t50, 0,x,`. ~2.6!

A small, constant perturbation in the autocatalyst concen
tion is made to this state at the inlet (x50) for all t.0:

b~0,t !5m1b0 , 0,ub0u!1, ~2.7!

whereb0 is a constant for allt.0. We take conditions to be
uniform at infinity so that

]a

]x
→0,

]b

]x
→0, as x→`, t.0, ~2.8!

and keep the reactant concentration at its steady state val
x50,

a~0,t !5m21 for all t.0. ~2.9!

Andersenet al. @1# have considered the system in th
Hopf domainm0,m,1 where the steady stateS is unstable.
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However, we do not restrict ourselves to the Hopf dom
and will leavem unconstrained in order to deduce all po
sible regimes that give rise to stationary, space-perio
structures. Our goal is to study the effect of the applied el
tric field upon the steady stateS, and if S is unstable toward
small perturbations~2.7!, to determine what kind of pattern
emerges. To do so we perform a linear stability analysis

III. LINEAR STABILITY ANALYSIS

System~2.4!–~2.9! constitutes a closed initial-value prob
lem. Its main feature is the boundary perturbation at the
stream boundaryx50 that persists for allt.0 @Eq. ~2.7!#.
This is a so-calledconstant boundary-forcing problem. A
similar problem was already analyzed in@11# for the system
~2.4! and ~2.5! but with d50 and when a periodic tempora
signal is applied at the boundary in the autocatalyst conc
tration. Nevertheless, the methods used in@11# are general
and as such they can be applied to the present problem

To examine the stability of the steady stateS to small
perturbations we put

a5m211A, b5m1B, ~3.1!

whereA!a, B!b are small. Substituting Eq.~3.1! into Eqs.
~2.4! and ~2.5! gives, after linearizing,

]A

]t
5d

]2A

]x22df
]A

]x
2m2A22B, ~3.2!

]B

]t
5

]2B

]x22f
]B

]x
1m2A1B. ~3.3!

We express the solution of Eqs.~3.2! and~3.3! in terms of
Fourier transforms in space as

~A,B!5
1

2p E
2`

`

„A0~v!,B0~v!…eiv1k~v!xdv. ~3.4!

The functionsA0(v),B0(v) depend on the form of the ini
tial data. In our case we assume that the perturbation is
plied at the inflow boundaryx50 for a long but finite time.
This allows us to take initial data with time-compact supp
for which the solutions to Eq.~3.4! are analytic functions in
the complexv plane.

Before discussing the dispersion relation for proble
~3.1!–~3.4!, it is instructive to recall some facts about th
stability of the steady stateS when the system is subject t
spatially localized perturbations@12,6#. In this case relation
~3.4! is modified to

~A,B!5
1

2p E
2`

`

„A0~k!,B0~k!…ev~k!t1 ikxdk, ~3.5!

wherev satisfies the dispersion relation

v21@~d11!k21 i ~d11!fk1m221#v1dk412idfk3

1~m22d2df2!k21 if~m22d!k1m250. ~3.6!

Note that Eq.~3.6! reduces to the dispersion relation deriv
in @12# for the case~DIFI! arising from a totally immobilized
substrateA1 if we put d50. It also gives the dispersion
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PRE 62 115NON-TURING STATIONARY PATTERNS IN FLOW- . . .
relation for Turing instability @7# if we set f50. From Eq.
~3.6! we can derive the DIFI neutral curves; i.e., those cur
in f-k space on which Re(v)50. After a little calculation we
find that these are given by

f
*
2 5

@dk41~m22d!k21m2#@~11d!k21m221#2

~d21!2~12k2!~m21dk2!k2 ,

for 0,k,1 ~3.7!

for dÞ1. Whend51, i.e., in the absence of a differenti
transport, Re(v),0 for all values off and m.1 ~in fact,
inff* 5`). A necessary condition for Eq.~3.7! to hold is
that 0,k,1 with the curve having vertical asymptotes
k50 andk51. The form of the neutral curve then depen
on the sign of the term

T[dk41~m22d!k21m2. ~3.8!

The curveT50 gives the neutral curve forTuring insta-
bilities in the absence of an electric field~differential flow!
@7#, with the condition thatm2,(322&)d being needed to
have a finite range of wave numbersk over which the steady
stateS is unstable to small perturbations. Whenm.1, anec-
essary condition for Turing instabilityis therefore thatd
.(312&)m2.

WhenT.0 @i.e., m2.(322&)d] the expression on the
right-hand side of Eq.~3.7! is positive for allk on 0,k,1
and the neutral curvef* 5f(k,d,m) has a minimum at a
nonzero value off* 5f

*
c (m,d).0. A typical neutral curve

for this case is shown in Fig. 1~a!.
Whenm25(322&)d, T50 atk25&21 for all d, and

the neutral curve touches thef50 axis at this value ofk.
This case is illustrated in Fig. 1~b!.

FIG. 1. A typical neutral curvef* , defined in Eq.~3.7!, for the
three different cases:~a! m2.(322&)d, ~b! m25(322&)d, and
~c! m2,(322&)d, respectively.
s

Whenm2,(322&)d, T50 at k1.2 where

k1,25
1
2 ~12Y7A126Y1Y2!, Y5

m2

d
,~322& !d,

~3.9!

and 0,k1
2,k2

2,1. In this case the instability arises from
both Turing and DIFI mechanisms, and the curve on which
Re(v)50 consists of two sections, namely, the values off
given by expression~3.7! for 0,k<k1 and k2<k,1 and
f50 for k1<k<k2 . This case is illustrated in Fig. 1~c!.

From this discussion we conclude that there are range
wave numberk over which Re(v).0 @for f>fc.0 with
m2.(322&)d and forf.0 with m2<(322&)d] where
the spatially uniform stateS is unstable to small perturba
tions. No other instabilities fromS are possible form.1.

Now we return to the original problem~3.1!–~3.4!. Using
Eq. ~3.4! in Eqs.~3.2! and~3.3!, a brief calculation gives the
dispersion relation

2v21 i „2~d11!k21~d11!fk1m221…v1dk422dfk3

2~m22d2df2!k21f~m22d!k1m250. ~3.10!

Since we are interested in stationary bifurcating solutio
we setv50 and obtain

R[dk422dfk31~d1df22m2!k21f~m22d!k1m250.
~3.11!

Equation~3.11! may have a complex solutionk. Solutions
that bifurcate to space-periodic structures will have pur
imaginary wave numberskc5 izc , zc.0. A short calculation
reveals that

zc5Ad2m2

2d
. ~3.12!

Note that this bifurcation can only exist whend.m2. Put-
ting this value ofk in Eq. ~3.11! gives theneutral curve of
the boundary-forcing problem, i.e., the curvef* 5f(d,m),
which corresponds to thebifurcation to stationary (FDS) so-
lutions

f* 252
1

2

d226dm21m4

d~d2m2!
~3.13!

for dÞ0. We have thatf* →` asd→m2 ~from above! and
f* →0 asd→(312&)m2 ~from below!, with f* having a
decreasing, convex shape for all intermediate valuesm2,d
,(312&)m2. Since the right-hand side of Eq.~3.13! must
be positive it follows, via Eq.~3.12!, that Eq.~3.13! can only
exist for

m2,d,~312& !m25dT . ~3.14!

From our discussion following Eq.~3.8!, dT is the boundary
of the Turing domain. In particular, we see that no bifurc
tion to stationary FDS is possible whend51 andm>1, i.e.,
outside the batch mode limit cycle~Hopf! domain, in accord
with @1,5#. However, FDS may arise for anydÞ1 for a cer-
tain range of values ofm.1. The FDS instability thus ex-
tends to both sides of the Hopf domainm0,m<1 of
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116 PRE 62RAZVAN A. SATNOIANU AND MICHAEL MENZINGER
the homogeneous system; i.e., stationary FDS solutions a
in the nonoscillating 1,m domain as well as in the unstab
m,m0 domain of the kinetic system~2.1!–~2.3!.

A plot of the neutral curvef* 5f* (1.2,m) ~for d51.2)
is given in Fig. 2~a!, and a plot of the curvef*

FIG. 2. ~a!. Plot of the neutral curvef* given in Eq.~3.13! for
d51.2 andA(322&)d50.453,m,Ad51.09. ~b!. Plot of the
neutral curvef* given in Eq.~3.13! for m50.99 andm250.9801
5dmin,d,dT5(312&)m255.71. ~c!. A comparison between the
values of neutral curvef* ~3.13! to those of the minimum of the
neutral curve forf* ~DIFI! given in Eq.~3.7! for m.1. Here for
the casem51.2.
ise

5f* (d,0.99) ~for m50.99) is given in Fig. 2~b!. Figure 2~a!
demonstrates that the regime of stationary FDS solutions
tends well beyond the unstable Hopf domain (m0'0.9003
,m<1) of the homogeneous batch system, both into
stable domain (m.1) and into the unstable domain (m
,m0), which lacks an attractor in the batch but which m
be stabilized by a flow to give FDS solutions.

It is instructive to compare the values of the FDS neut
curve ~3.13!, f* , with those of the minimum of the DIFI
neutral curve forf* given by Eq.~3.7! for m.1. This is
shown in Fig. 2~c! for the valuem51.2. We see that the
neutral curve for stationary FDS solutions~denoted byf* in
this figure! always lies above the corresponding value of t
minimum of the neutral curve of the DIFI problem~which
incidentally corresponds@11# to the minimum of the DIFI
forcing problem!. This shows that the dynamic regime is s
by the DIFI instability, but unlike the DIFI~where there are
always traveling waves born from the primary DIFI bifurc
tion @12#!, we have here stationary waves. Note also that
two curves are tangent at some intermediate value ofd ~here
d'2.0) and that they converge again asymptotically asd
→` ~even if the curves are only defined ford<dT). Fur-
thermore, we have repeated these calculations for a rang
values of m and found the same conclusion all the tim
implying that this is a general feature. It is clear that the D
convective regime established for our system in@6# ~see also
@13,14#! is a necessary requirement for the stationary wa
FDS instability to set in, since this convective mechanism
the physical way by which the initial boundary instability
transported all the way into the spatial domain.

From the above we deduce two important conclusio
First, this instability to space-periodic patterns is not
stricted tod51 ~equal diffusion and implicitly flow rates!,
but in fact it does hold for a whole range of values@as given
by Eq. ~3.14!# bounded from above by the Turing bounda
d5dT . Second, there is no restriction onm that requires the
system to lie within the Hopf domain, as presented in@1#.
This result is by far richer than what one could anticipa
This type of structure has in fact been observed experim
tally outside the basin of attraction of the batch mode lim
cycle @15#.

IV. NUMERICAL EXPLORATIONS

The above analysis was performed for an unbounded o
dimensional domain. The reason for this is that we w
interested in the self-organization of the system for patt
formation in the absence of the boundary at the outlet. N
ertheless, in the numerical simulations to be presented be
we had to impose boundary conditions at the outlet. T
effect of this is to produce an imperfect FDS bifurcation~i.e.,
the critical FDS-flow velocity is perturbed with some sma
negligible value if the simulations are run for a sufficient
long domain and the boundary condition does not force
system too much!. We found that the appropriate condition
to impose are either of the zero flux or free boundary ty
~i.e., the second spatial derivative equals zero!. The quanti-
tative assessment of the influence of these boundary co
tions used in the simulations has already been analyze
great detail for the differential-flow system of this type
@12#, so there is no need to redo this here.
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PRE 62 117NON-TURING STATIONARY PATTERNS IN FLOW- . . .
We begin our discussion by analyzing the mechanism
wavelength selection to stationary, space-periodic FDS
terns. To do so, note that from Eqs.~3.11! and ~3.12! the
wave number at criticality is purely imaginary with

kc5 izc , zc5Ad2m2

2d
. ~4.1!

On using Eq.~3.4!, we see that the wave number~4.1!
gives the most unstable ‘‘mode,’’ predicting the waveleng
at criticality as

lc5
2p

zc
52pA 2d

d2m2. ~4.2!

A plot of the analytical wavelength predicted from Eq.~4.2!
is shown in Fig. 3~a! for the casem50.99 and form2

50.9801,d,(312&)m255.7124 . . . . It is easy to see
that lc is a decreasing function ofd ~for given m! having a
horizontal asymptotelc52&p asd→`.

We verified this prediction by solving the initial-valu
problem ~2.4!–~2.9! numerically. We employed@6,12# an
implicit Crank-Nicholson finite-difference scheme with th
algebraic systems of equations resulting from the discret
tion then being solved by Newton-Raphson iteration. T
method has been successfully used for a great numbe
reaction-diffusion-convection problems~see references in
@6,12#!. We performed simulations for quite a large set
parameter values but shall review here only the most gen
behavior. For the simulations presented below, typical val
for b0 were60.1, 60.2.

Results form50.99 are shown in Figs. 3~b! and 3~c! for
the casesd51.2 andd52.0. Ford51.2 we havefc52.98
@from Eq.~3.13!# giving l(analytic)520.822. The numeri-
cal value found isl(numeric)520.9. Ford52.0 we have
fc51.291 giving l(analytic)512.442 andl(numeric)
512.45. We can see the decrease in the wavelength. Fo
the other numerically computed values the results agr
well ~within the numerical accuracy of the code! with the
analytical counterparts~4.2!. Remarkable is the transient be
havior in the autocatalyst concentrationb seen in Fig. 3~c!,
which is reminiscent of the dynamical competition betwe
two processes, namely, the Hopf oscillatory instability of t
stationary state and also the instability due to the forc
problem ~stationary-periodic wave instability!. The result
seen here is generic for the behavior seen in all the solut
whend was increased from 1.

We also explored the behavior of the system whenf was
set sufficiently well away from the critical value~3.13!. This
is illustrated in Figs. 4~a! and 4~b! for m50.99,d51.0, and
f511.0 and 30.0, respectively. Forf511.0 we have
l(analytical)569.82 withl(numeric)570.2, and forf
530.0 we foundl(analytical)5190.4 withl(numeric)
5191.4. It is interesting that the simple theory from Eq
~4.1! and~4.2! works so well for such high values of the flo
rate. We found that the analytical predictions given by
linear theory @see Eqs.~3.13!, ~4.1!, and ~4.2!# remained
valid for all the other cases tried as well. These facts at
that a simple mechanism for pattern selection is opera
and valid at least in the entire parameter region where
made calculations.
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FIG. 3. ~a!. A plot of the analytically predicted wavelength a
given by Eq.~4.2! for m50.99 and form250.9801,d,dT5(3
12&)m255.71. ~b!. Gray scale contour plot of the activator con
centration showing the spatial periodic pattern for the cased
51.2, m50.99. Here fc* (1.2,0.99)52.98 . . . . Here
f* c(1.2,0.99)50. The wavelength of the periodic pattern
l(numeric)520.9 and we have predictedl(analytic)520.822.
~c!. Gray scale contour plot of the activator concentration show
the spatial periodic pattern for the cased52.0, m50.99. Here
fc* (2.0,0.99)51.291 . . . . Here f* c(2.0,0.99)50. The wave-
length of the periodic patternl(numeric)512.45 and we have
predictedl(analytic)512.442. Note the initial dynamic structur
~transient! in the concentration that is eventually washed out fro
the domain by the flow. A stationary periodic pattern finally invad
the entire domain.
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118 PRE 62RAZVAN A. SATNOIANU AND MICHAEL MENZINGER
More interesting behavior was seen for values ofd close
to the Turing valuedT given by Eq.~3.14!. Take, for ex-
ample, the cased54.5, m50.98, f50.39 ~here we have
dT55.59). Figure 5~a! displays a color contour plot of th
autocatalyst concentration for this case up to the mom
when a stationary structure~space-periodic! has been well
developed in the full computational domain. We can see
there is an initial transient period during which there is
dynamic competition between two effects: the stationary p
dicted pattern and a time-depending solution. Eventually
stationary structure dominates for all times. In Fig. 5~b! we
show the behavior found for the cased59.26, m51.5, f
50.55 for whichdT513.11. We see that we do have a s
tionary pattern but with a more complicated structure.
front part has higher amplitude than the section near the
tial perturbation boundary.

V. CONCLUSIONS

The Turing mechanism@4# is the textbook example o
stationary spatial pattern formation arising in reactio
diffusion systems through the interplay of activator/inhibit
kinetics with fast inhibitor diffusion. The generalization

FIG. 4. ~a!. Gray scale contour plot of the activator concent
tion showing the spatial periodic pattern for the case when the fl
is set away from the critical value:d51.0,m50.99,f511.0. Here
fc* (1.0,0.99)59.924.~b!. Gray scale contour plot of the activato
concentration showing the spatial periodic pattern for the casd
51.0, m50.99, f530.0. Note the increase in the pattern wav
length with the flow as compared to that in Fig.~a!.
nt

at

-
e

-
s
i-

-

differential convections of activator and inhibitor species l
to the differential-flow instability@3#. The essential novelties
of the FDO mechanism lie in the fact that, in its simple
manifestation, i.e., when diffusion is neglected, it is pure
kinematic in that it produces stationary waves without
quiring any differential transport. Instead, the flow distri
utes a bulk oscillation through space while the phase at
upstream boundary of the flow determines the phases in
entire flow domain. Fixed boundary conditions at the inflo
give rise to stationary waves@1,5# and oscillatory boundary
conditions lead to traveling waves@1,15#.

The conditions for FDO waves are essentially kinema
less restrictive, and hence more general than those of
classical differential transport generated patterns~for ex-
ample, Turing or DIFI! @6,16#. But it is conceivable that in
natural and experimental settings, FDO may also be acc
panied by differential transport. Possible examples may
volve the flow of groundwater through soil or the flow o
intracellular constitutive liquids through biological tissues
structures@16,17#. With this type of physical setting in mind
we chose the ionic version of the chemical oscillator mo
of Gray and Scott, generated differential diffusion and flo

-
w

-

FIG. 5. ~a!. Gray scale contour plot for the activator speci
concentrationb for the cased54.5, m50.98, f50.39. Here
f* c(4.5,0.98)50.365.~b!. Gray scale contour plot for the autocat
lyst concentration for the cased59.26, m51.5, f50.55. Here
f* c(9.26,1.5)50.5035.
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by imposing an external electric field, unfolded the FDS s
bility analysis into the differential diffusion and flow do
mains, and studied the interfaces of the FDS with the Tur
and DIFI domains.

Differential transport was found to add a pronounced
namical component to the zero-order kinematic FDO mo
@5#. While the latter predicts FDO waves only when the s
tem oscillates autonomously, differential diffusion and flo
expand the range of existence of FDO waves to FDS acc
panied by a bigger parameter domain of the kinetic para
eter m, extending to either side beyond the Hopf doma
FDS persists over the whole range of the differential tra
port ratio d up to the Turing limitd5dT , beyond which
Turing patterns are advected by the flow. Thus we concl
that the FDS mechanism is a very flexible one.

In conclusion, we have described a general mechan
that leads to stationary space-periodic structures for a w
P

, J

J.

. E
-

g

-
l

-

-
-

.
-

e

m
e

range of parameter values and that is distinct from the Tur
mechanism. We have pointed out its relation to the class
DIFI and Turing instability regimes: stationary FDS sol
tions exist only within the convective~DIFI! regime and for
a finite range of values of the diffusion ratiod up to, and
linking with, the Turing regime. Since the conditions of th
FDS/FDO mechanisms are easy to implement in the lab
tory @5#, we envisage that they will play important roles
physical, technological, and biological settings.
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