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An analytical predictioP. Andreseret al, Phys. Rev. B60, 297(1999] and its experimental confirmation
[M. Kaernet al, Phys. Rev. B60, 3471(1999] establish a mechanism for forming stationary, space-periodic
structures in a reactive floyweaction-diffusion-convection systemwith equal diffusion and flow rates. In this
paper we generalize the analysis to systems with unequal diffusion and flow rates. Interestingly, stationary
waves also exist outside the oscillatory Hopf domain of the batch system—hence the parameter space in which
these structures exist is bigger than that initially predi¢fedAndreseret al, Phys. Rev. E60, 297 (1999 ]
(for equal diffusion and flow ratésOn the other hand, we find that these stationary waves exist only for
parameter values outside of and up to the Turing regime. We clarify the nature of the instability in terms of a
boundary-forcing problem, whereby a time-periodic pattern is carried over the whole domain by the flow while
the phase is fixed at the inflow boundary.

PACS numbeps): 82.20—w

[. INTRODUCTION region where the reference state is stable. Our analytical re-
sults confirm the kinematic interpretati¢f] that the FDO
Andresenet al. [1] proposed an alternative spatial insta- instability is being driven by boundary forcing that freezes
bility mechanism that gives rise to stationary, space-periodi¢he temporal oscillation phase of the species traveling along
patterns in a time-oscillating reaction-diffusion-convectionthe flow domain until the other boundary is encountered.
system with equal diffusion and flow rates through the con-

stant forcing at the inflow boundary of the flow domé#&see Il. A REACTION-DIFFUSION-CONVECTION SYSTEM
also the earlier contributiof2]). This mechanism is interest- WITH UNEQUAL DIFFUSION AND FLOW RATES:
ing since it differs fundamentally from the Turifg] and AN IONIC CHEMICAL SYSTEM WITH CUBIC
differential flow instabilitieg DIFI) [3], which require differ- AUTOCATALYTIC STEP

ential transport pf the key. _species, and sincg the cpnditi_ons We generalize the problem considered 1) by employ-
for th.e alternative 'nStab',“ty may be f_ea‘?'"y reallzgd n ing a model for a differential-flow reactor based on applying
chemical flow reactors, using active media in the oscillatory, ' gjectric field to a reacting medium with an ionic version
(Hopf) domain. This prediction was confirmed experimen-o¢ hic autocatalatofor Gray-Scoft kinetics[6]. The dif-
tally by Kaern and Menzingef5]. From their results it is  ferential flow (or migration of the reacting species arises
clear that the patterns arise by a mechanism that is essentialdynce substraté&* and autocatalysB* have different drift
kinematic. Accordingly, the flow carries temporal oscilla- yelocities due to their different diffusion coefficients. By us-
tions into space, while the oscillation phase is locked at theng the cubic autocatalator mod&ls opposed to the Bruss-
inflow boundary through a constant boundary condition.elator model in[1]) it simplifies considerably the details of
Therefore we refer to these stationary structures as flonthe subsequent calculations while still preserving all the fea-
distributed oscillationgFDO). tures of the general case.

In this work we generalize the above results to the case of The model assumes that we have a precuPsbpresent
a reaction-diffusion-convection system with differential in excess. To maintain electroneutrality we also require a
transport, i.e., with different diffusion and flow rates. To dis- further specie®™ to be present in the reactor at a concen-
tinguish the resulting wave&or this more general case tration similar to that ofP™*, though this species does not
from the FDO waves, we refer to them here as flow-take part in the reaction. We assume tRat decays at a
distributed structures or FDS. The analysis provides theonstant rate to form the substraé via
boundary of the FDS instability in the parameter domain and
clarifies its relation to Turing and DIFI patterns. We analyze PT—A", rate=kqpo, (2.1
how this instability connects with the Turing and DIFI do-
mains and discuss the interface with, and difference fromwherepg is the initial concentration of the reservoir species
the two classical, differential transport-induced instability P". The substraté™ and autocatalysB ™ subsequently re-
mechanisms. This paper sheds light on how the regiondct according to the scheme
where stationary Turing patterns are observed in the absence

of a bulk flow, may be extended by the presence of a flow. A"+2BT—3B", rate=k;ab? (2.2
We find that an unstabl@Hopf) reference state is not neces-
sary for FDS to occur, and that their domain extends into the B*—C*, rate=k,b, (2.3
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where thek; are constants ana, b are the concentrations of However, we do not restrict ourselves to the Hopf domain
A* andB*. The nonionic version of this scheme is fully and will leave u unconstrained in order to deduce all pos-
described i 7], where a justification for the pool chemical sible regimes that give rise to stationary, space-periodic
approximation, which allows stef2.1) to proceed at a con- structures. Our goal is to study the effect of the applied elec-
stant rate, is given. tric field upon the steady staf and if Sis unstable toward
With P* andC™ present in excess, so that reacti¢2<) small perturbation$2.7), to determine what kind of pattern
and (2.3) make only a small net contribution to the overall emerges. To do so we perform a linear stability analysis.
ionic balance, we can invoke the constant field approxima-
tion used extensively in previous models. A formal justifica- Il. LINEAR STABILITY ANALYSIS
tion for this approximation is given if8]. We take the reac- ) _
tor to be such that transverse variations in concentration can SYStem(2.4—(2.9) constitutes a closed initial-value prob-
be neglected, and it is sufficiently long for end effects to be®m- Its main feature is the boundary perturbation at the up-
negligible[5]. This leads to the dimensionless reactor modeftream boundarx=0 that persists for alt>0 [Eq. (2.7)].
(see[6] for the derivation of these equations and the influ-This is a so-calledconstant boundary-forcing probleri

ence of the electric field in their form similar problem was already analyzed[iti] for the system
(2.4) and(2.5) but with §=0 and when a periodic temporal
Jda 9%a Jda 5 signal is applied at the boundary in the autocatalyst concen-
i 5¢5+M—ab , (2.4 tration. Nevertheless, the methods usedlt] are general
and as such they can be applied to the present problem.
b % ab To examine the stability of the steady st&igo small

primir vl vy ab®-b, (2.5  perturbations we put

-1
a= +A, b=u+B, 3.1
wherea, b, t and x are the dimensionless concentrations, " " @
time, and distance along the reactor withO and O0<x  whereA<a, B<b are small. Substituting E43.1) into Eqs.
<. Here=D /Dy is the ratio of diffusion coefficients of (2.4) and(2.5) gives, after linearizing,

substrateA* and autocatalysB™, respectively, and is the

. . - . i . . 2

?d:rggngnless drift velocity oB*, which we use as the b|_- ﬁ: 5%_ 56 A LPA—2B, (3.2
parameter. Sinced couples the differential ot IX IX

diffusion and flow[through thed¢ term in Eq.(2.4)] it is

also called the differential transport ratio. Without any loss B °B B )

of generality we assume that>0. On puttings=0 in Egs. Tl P THATB. 33

(2.4) and (2.5 we recover the model discussed in Satnoianu

et al. [9] and Merkinet al.[10]. We express the solution of Eq8.2) and(3.3) in terms of

The kinetic system(2.4) and (2.5), has a(spatially uni-  Fourier transforms in space as
form) steady statés=(a,b)=(u "1, u) that is stable foru
>1 and undergoes a supercritical Hopf bifurcation wat
=1. This leads to stable limit cycles in the interya}<<u
<1 (u=0.9003). Foru<pug, the kinetic system does not
have a long-time steady state with-ut, b—0 ast—o. The functionsAy(w),By(w) depend on the form of the ini-
We assume that initially the system is in its spatially uniformtial data. In our case we assume that the perturbation is ap-

1 (= _
(A,B)=ZLC(AO(w),Bo(w))e'w+k<w>de. 3.9

reference stat§, taking plied at the inflow boundarx=0 for a long but finite time.
This allows us to take initial data with time-compact support
a=u~t b=p att=0, 0<x<eoe. (2.6 for which the solutions to Eq:3.4) are analytic functions in

o the complexw plane.
A small, constant perturbation in the autocatalyst concentra- Bgefore discussing the dispersion relation for problem
tion is made to this state at the inlet<0) for all t>0: (3.1)—(3.4), it is instructive to recall some facts about the
_ stability of the steady stat8 when the system is subject to
b(0t)=n+bg, 0<[bg|<1, (2.7 spatially localized perturbationgl2,6]. In this case relation

whereby is a constant for alt>>0. We take conditions to be (3.4) is modified to

uniform at infinity so that 1 (= _
(AB)= 5= | (Aofk) Bolkpestioak, @9
Ja b 27 ) =
— =0, ——0, asx—cw, t>0, (2.8
X 2 wherew satisfies the dispersion relation
and keep the reactant concentration at its steady state value at,2 [ ( 5+ 1)k2+i(5+ 1) pk+ u2— 1]w+ Sk*+ 2i 5pk3
x=0,
+(u?— 86— 8K +ip(u?— 8)k+ u?=0. (3.6)
a(0t)=p~ 1 for all t>0. (2.9
Note that Eq/(3.6) reduces to the dispersion relation derived
Andersenet al. [1] have considered the system in the in [12] for the cas€DIFI) arising from a totally immobilized
Hopf domainuy< u<1 where the steady staBds unstable. substrateA™ if we put §=0. It also gives the dispersion
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o g When u?<(3—2v2)8, T=0 atk, , where

2
- kio=2(1-YTVI-6Y+Y?), Y= %<(3—2ﬁ)5,

(3.9
20

both Turing and DIFI mechanismsand the curve on which
Re(w)=0 consists of two sections, namely, the valuespof
given by expressiori3.7) for 0<k<k; andk,<k<1 and
¢=0 for ky<k=k,. This case is illustrated in Fig.(d).

From this discussion we conclude that there are ranges of
(a) 00 05 10 () 00 05 10 wave numberk over which Re@)>0 [for ¢=¢.>0 with

¢ u2>(3—2v2) 6 and for >0 with u?<(3—2v2) 6] where

the spatially uniform staté& is unstable to small perturba-
tions. No other instabilities frons are possible fo>1.

Now we return to the original proble3.1)—(3.4). Using
Eq. (3.4) in Egs.(3.2 and(3.3), a brief calculation gives the
dispersion relation

| and 0<k?<k3<1. In this case the instability arises from
|

—0?+i(—(+DK2+ (6+1) pk+ pu?— 1w+ 5k —254k3
—(u?—6—6¢?)k>+ p(u?— 6)k+ u?=0. (3.10

0

)b 02 04 06 08 10

Since we are interested in stationary bifurcating solutions,
FIG. 1. A typical neutral curve, , defined in Eq(3.7), forthe  we setw=0 and obtain
three different case$a) u2>(3—2v2) 46, (b) u?>=(3—2v2) 8, and
(0) u2<(3—2v2) 4, respectively. R=6k*—28¢pk3+ (6+ 8> — u?)k%+ p(u?— 8)k+ u?=0.

(3.11
relation for Turing instability[7] if we set ¢=0. From Eq.

(3.6) we can derive the DIFI neutral curves; i.e., those curve€guation(3.1) may have a complex solutiok Solutions
in ¢-k space on which Re)=0. After a little calculation we that bifurcate to space-periodic structures will have purely
find that these are given by imaginary wave numbets.=iz., z.>0. A short calculation

reveals that
[k (u?= o)+ pwPI[(1+ &)k*+ u?— 177
* = (06— 1)2(1—K) (12+ KK ’ 7o o— K

for 0<k<1 (3.7

(3.12

Note that this bifurcation can only exist whei» u?. Put-
for 6#1. Whené=1, i.e., in the absence of a differential ting this value ofk in Eq. (3.11) gives theneutral curve of
transport, Ref)<0 for all values of¢ and u>1 (in fact,  the boundary-forcing probleni.e., the curvep* = ¢ (5, ),
inf¢, =). A necessary condition for Eq3.7) to hold is  which corresponds to thaifurcation to stationary (FDS) so-
that O<k<1 with the curve having vertical asymptotes at |ytions
k=0 andk=1. The form of the neutral curve then depends

on the sign of the term 1 8%2—68u’+ut
g ¢*2:_§T5—ﬂ)# (3.13
T=6k4+ (u2— S)K2+ u2. (3.9 H

. L for 56+0. We have thaty* — asé— u? (from above and

._'I"he _curveT:O gives the neutra} curve foTurmg insta- #* —0 asé—(3+2v2) u2 (from below, with ¢* having a
b|||t|es_ in the abs.eﬂce of ""2 electric fle(dlffe_rentlal flow decreasing, convex shape for all intermediate vajues &
[7], with the condition thaj“<(3—2v2) é being needed to <(3+2v2) u2. Since the right-hand side of E8.13 must

have a finite range of wave numbdesver which the steady b e LN :
. ) tive it follows, Eq(3.12, that Eq.(3.1 I
stateSis unstable to small perturbations. Whet-1, anec- e)e(zistofirwe it follows, via Eq(3.12, that £q.(3.13 can only

essary condition for Turing instabilitys therefore thatd

>(3+2v2) u?. p2< < (3+2v2) 2= 8;. (3.14
WhenT>0 [i.e., u?>(3—2v2) 8] the expression on the

right-hand side of Eq(3.7) is positive for allk on 0<k<1  From our discussion following Eq3.8), &7 is the boundary

and the neutral curveb, = ¢(k,6,u) has a minimum at a of the Turing domain. In particular, we see that no bifurca-

nonzero value ofp, = ¢5 (u,8)>0. A typical neutral curve tion to stationary FDS is possible whéix1 andu=1, i.e.,

for this case is shown in Fig.(8). outside the batch mode limit cyclélopf) domain, in accord
Whenu?=(3-2v2)68, T=0 atk?=v2—1 for all 5, and  with [1,5]. However, FDS may arise for any 1 for a cer-

the neutral curve touches thg=0 axis at this value ok.  tain range of values oft>1. The FDS instability thus ex-

This case is illustrated in Fig.(4). tends to both sides of the Hopf domajmy<u<1 of
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FIG. 2. (a). Plot of the neutral curve* given in Eq.(3.13 for
5=1.2 and(3—2v2)5=0.453< u< /6=1.09. (b). Plot of the
neutral curveg* given in Eq.(3.13 for £ =0.99 andu?=0.9801
= 8in<0<8r=(3+2v2)u?>=5.71. (c). A comparison between the
values of neutral curveb* (3.13 to those of the minimum of the
neutral curve forg, (DIFI) given in Eq.(3.7) for u>1. Here for
the caseu=1.2.

=¢*(6,0.99) (for ©=0.99) is given in Fig. th). Figure Za)
demonstrates that the regime of stationary FDS solutions ex-
tends well beyond the unstable Hopf domajm,0.9003
<u=<1) of the homogeneous batch system, both into the
stable domain £>1) and into the unstable domainu (
<o), Which lacks an attractor in the batch but which may
be stabilized by a flow to give FDS solutions.

It is instructive to compare the values of the FDS neutral
curve (3.13, ¢*, with those of the minimum of the DIFI
neutral curve forg, given by Eq.(3.7) for u>1. This is
shown in Fig. 2c) for the valueu=1.2. We see that the
neutral curve for stationary FDS solutiof@enoted byp* in
this figure always lies above the corresponding value of the
minimum of the neutral curve of the DIFI probletwhich
incidentally correspondfl1] to the minimum of the DIFI
forcing problem. This shows that the dynamic regime is set
by the DIFI instability, but unlike the DIF{where there are
always traveling waves born from the primary DIFI bifurca-
tion [12]), we have here stationary waves. Note also that the
two curves are tangent at some intermediate valug (bkre
6~2.0) and that they converge again asymptoticallydas
—oo (even if the curves are only defined fé 7). Fur-
thermore, we have repeated these calculations for a range of
values of u and found the same conclusion all the time,
implying that this is a general feature. It is clear that the DIFI
convective regime established for our systemi@h(see also
[13,14) is a necessary requirement for the stationary wave,
FDS instability to set in, since this convective mechanism is
the physical way by which the initial boundary instability is
transported all the way into the spatial domain.

From the above we deduce two important conclusions.
First, this instability to space-periodic patterns is not re-
stricted to5=1 (equal diffusion and implicitly flow rates
but in fact it does hold for a whole range of valjes given
by Eg.(3.14] bounded from above by the Turing boundary
6= 67. Second, there is no restriction gnthat requires the
system to lie within the Hopf domain, as presented lih
This result is by far richer than what one could anticipate.
This type of structure has in fact been observed experimen-
tally outside the basin of attraction of the batch mode limit
cycle[15].

IV. NUMERICAL EXPLORATIONS

The above analysis was performed for an unbounded one-
dimensional domain. The reason for this is that we were
interested in the self-organization of the system for pattern
formation in the absence of the boundary at the outlet. Nev-
ertheless, in the numerical simulations to be presented below
we had to impose boundary conditions at the outlet. The
effect of this is to produce an imperfect FDS bifurcatioa.,
the critical FDS-flow velocity is perturbed with some small,
negligible value if the simulations are run for a sufficiently
long domain and the boundary condition does not force the
system too much We found that the appropriate conditions
to impose are either of the zero flux or free boundary type

the homogeneous system; i.e., stationary FDS solutions arigge., the second spatial derivative equals refde quanti-
in the nonoscillating £ x domain as well as in the unstable tative assessment of the influence of these boundary condi-

n<puo domain of the kinetic syster{2.1)—(2.3).
A plot of the neutral curvep* = ¢* (1.2u) (for 6=1.2)
is given in Fig. 2a), and a plot of the curve¢*

tions used in the simulations has already been analyzed in
great detail for the differential-flow system of this type in
[12], so there is no need to redo this here.
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We begin our discussion by analyzing the mechanism for 151
wavelength selection to stationary, space-periodic FDS pat-
terns. To do so, note that from Eq®.11) and (3.12 the 121
wave number at criticality is purely imaginary with 1,(0.99,9)

. [6—u?
Ke=ize, 2Z.= TR 4.7) &

On using Eq.(3.4), we see that the wave numbet.1) 3-
gives the most unstable “mode,” predicting the wavelength
at criticality as 04— : : : ; :

_277_2 26
_Z_C_ 7 5—u®

4.2)

Cc
autocatalyst conteur plot

A plot of the analytical wavelength predicted from E4.2) 110
is shown in Fig. 8) for the casex=0.99 and foru? 1%
=0.980kK 6<(3+2v2)u?=5.7124 ... . It is easy to see )
that\. is a decreasing function af (for given w) having a
horizontal asymptota .=2v2#7 as §— .

We verified this prediction by solving the initial-value
problem (2.4—(2.9) numerically. We employed6,12] an
implicit Crank-Nicholson finite-difference scheme with the 5
algebraic systems of equations resulting from the discretiza- 2
tion then being solved by Newton-Raphson iteration. The 10
method has been successfully used for a great number of TR T S R T, T e
reaction-diffusion-convection problem&ee references in ESEERICTLE '

[6,12]). We performed simulations for quite a large set of (b)

parameter values but shall review here only the most generic
behavior. For the simulations presented below, typical values
for by were 0.1, =0.2.

Results foru=0.99 are shown in Figs.(B) and 3c) for
the case$¥=1.2 and6=2.0. For6=1.2 we havep.=2.98
[from Eq.(3.13] giving A (analytic) =20.822. The numeri-
cal value found is\(numerig=20.9. For6=2.0 we have
¢.=1.291 giving A(analytic)=12.442 and\(numerig ®
=12.45. We can see the decrease in the wavelength. For all =
the other numerically computed values the results agreed
well (within the numerical accuracy of the codwith the
analytical counterpart&}.2). Remarkable is the transient be-
havior in the autocatalyst concentratibreeen in Fig. &),
which is reminiscent of the dynamical competition between
two processes, namely, the Hopf oscillatory instability of the R N 000 2 PODHTRg 1900 « S00%AON°
stationary state and also the instability due to the forcing
problem (stationary-periodic wave instability The result ©
seen here is generic for the behavior seen in all the solutions
when § was increased from 1.

We also explored the behavior of the system witewas
set sufficiently well away from the critical valy8.13. This
is illustrated in Figs. @) and 4b) for ©=0.99,5=1.0, and

tme
3

autocatalyst contour plot

FIG. 3. (a). A plot of the analytically predicted wavelength as
given by Eq.(4.2 for ©=0.99 and foru?=0.980kK 6< 6;=(3
+2v2) u?=5.71.(b). Gray scale contour plot of the activator con-

- . - centration showing the spatial periodic pattern for the case
¢=11.0 and 30.0, respectively. Fop=11.0 we have ~12, p=099. Here @$(1.20.99-2.98.... Here

A(analytical) =69.82 Wlth)\(numerlc)=_70.2, and fo_r¢ $,:(1.2,0.99=0. The wavelength of the periodic pattern is
=30.0 we found\(analytical)=190.4 withA\(numerig  \ \yymerig=20.9 and we have predictedanalytic)=20.822.
=191.4. It is interesting that the simple theory from EQs.(¢) Gray scale contour plot of the activator concentration showing
(4.1) and(4.2) works so well for such high values of the flow e spatial periodic pattern for the cage-2.0,4=0.99. Here
rate. We found that the analytical predictions given by the¢§(2.0’o_gg): 1.29 ... . Here ¢,.(2.0,0.99=0. The wave-
linear theory[see Egs.(3.13, (4.1), and (4.2)] remained |ength of the periodic patterh(numerig=12.45 and we have
valid for all the other cases tried as well. These facts attesiredicted\ (analytic)=12.442. Note the initial dynamic structure
that a simple mechanism for pattern selection is operatin@ransient in the concentration that is eventually washed out from
and valid at least in the entire parameter region where wehe domain by the flow. A stationary periodic pattern finally invades
made calculations. the entire domain.
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FIG. 4. (a). Gray scale contour plot of the activator concentra-
tion showing the spatial periodic pattern for the case when the flow (b)
is set away from the critical valué=1.0, ©x=0.99,$»=11.0. Here ) ]
$*(1.0,0.99)=9.924. (b). Gray scale contour plot of the activator FIG. 5._(a). Gray scale contour plot for the activator species
concentration showing the spatial periodic pattern for the agase concentrationb for the caseé=4.5, ©=0.98, $=0.39. Here
=1.0, ©u=0.99, $=30.0. Note the increase in the pattern wave- ¢, -(4.5,0.98)=0.365.(b). Gray scale contour plot for the autocata-
length with the flow as compared to that in Fig). lyst concentration for the casé=9.26, u=1.5, ¢=0.55. Here

b, (9.26,1.5)=0.5035.

More interesting behavior was seen for valuessaflose
to the Turing valued; given by Eq.(3.14). Take, for ex- differential convections of activator and inhibitor species led
ample, the caseé=4.5, ©=0.98, $=0.39 (here we have to the differential-flow instability 3]. The essential novelties
57=5.59). Figure %) displays a color contour plot of the of the FDO mechanism lie in the fact that, in its simplest
autocatalyst concentration for this case up to the momernanifestation, i.e., when diffusion is neglected, it is purely
when a stationary structurgpace-periodichas been well kinematic in that it produces stationary waves without re-
developed in the full computational domain. We can see tha@iuiring any differential transport. Instead, the flow distrib-
there is an initial transient period during which there is autes a bulk oscillation through space while the phase at the
dynamic competition between two effects: the stationary preupstream boundary of the flow determines the phases in the
dicted pattern and a time-depending solution. Eventually the&ntire flow domain. Fixed boundary conditions at the inflow
stationary structure dominates for all times. In Figo)Sve  give rise to stationary waved,5] and oscillatory boundary
show the behavior found for the cage=9.26, u=1.5, ¢  conditions lead to traveling wavés,15].
=0.55 for whichs;=13.11. We see that we do have a sta- The conditions for FDO waves are essentially kinematic,
tionary pattern but with a more complicated structure. Itsless restrictive, and hence more general than those of the
front part has higher amplitude than the section near the iniclassical differential transport generated patteffis ex-

tial perturbation boundary. ample, Turing or DIFI [6,16]. But it is conceivable that in
natural and experimental settings, FDO may also be accom-
V. CONCLUSIONS panied by differential transport. Possible examples may in-

volve the flow of groundwater through soil or the flow of
The Turing mechanisnj4] is the textbook example of intracellular constitutive liquids through biological tissues or
stationary spatial pattern formation arising in reaction-structure§16,17. With this type of physical setting in mind
diffusion systems through the interplay of activator/inhibitor we chose the ionic version of the chemical oscillator model
kinetics with fast inhibitor diffusion. The generalization to of Gray and Scott, generated differential diffusion and flow
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by imposing an external electric field, unfolded the FDS statange of parameter values and that is distinct from the Turing
bility analysis into the differential diffusion and flow do- mechanism. We have pointed out its relation to the classical
mains, and studied the interfaces of the FDS with the TuringdIFI and Turing instability regimes: stationary FDS solu-
and DIFI domains. tions exist only within the convectivéDIFI) regime and for
Differential transport was found to add a pronounced dy- finite range of values of the diffusion rat®up to, and
namical component to the zero-order kinematic FDO modejinking with, the Turing regime. Since the conditions of the
[5]. While the latter predicts FDO waves only when the sys-FDS/FDO mechanisms are easy to implement in the labora-
tem oscillates autonomously, differential diffusion and ﬂOWtory [5], we envisage that they will p|ay important roles in
expand the range of existence of FDO waves to FDS acconphysical, technological, and biological settings.
panied by a bigger parameter domain of the kinetic param-
eter u, extending to either side beyond the Hopf domain.
FDS persists over the whole range of the differential trans- ACKNOWLEDGMENTS
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